Criteria for Head Injury and Helmet Standards

Jim Newman NBEC Inc.

Snell Memorial Foundation Seminar Medical College of Wisconsin, Milwaukee, Wisc., 6 May 2005

On the Use of the Head Injury Criterion (HIC) in Protective Headgear Evaluation

James A. Newman Mechanical Engineering, University of Ottawa

PROCEEDINGS OF NINETEENTH STAPP CAR CRASH CONFERENCE

November 17-19,1975 San Diego, California

Head Injury Assessment Functions.

A head injury assessment function (HIAF) is a functional relationship between the probability/severity of brain injury and some measurable response of the head to impact.

Premises

- Head injury caused by head impact.
- > Head impact causes head motion.
- Head motion characterized by rigid body kinematics.
- Kinematics usually expressed as linear acceleration.
- Most head injury assessment functions are based upon acceleration.

Exceptions

- High speed (ballistic) impact
- Low speed (crushing) loading
- > Brain injury secondary to impact (e.g. swelling).
- **)** Facial impact.
- Localized skull deformation.

- Maximum translational acceleration.
- Average acceleration plus time duration.
- D Gadd Severity Index GSI.
- Versace "Correction".
- D "Head Injury Criterion" HIC.

Helmet Impact Test Setup

Headform Acceleration Response

Maximum translational acceleration.

$a_m < N$

where a_m is the maximum value of the resultant head (c of g) linear accl'n.

Snell standards

- Maximum translational acceleration.
- > Average acceleration plus time duration.

Wayne State Concussion Tolerance Curve

Average acceleration and time duration.

Never ever used to assess head impact severity or head protection systems.

- Maximum translational acceleration.
- Average acceleration plus time duration.
- **Gadd Severity Index.**

Gadd Severity Index (1966).

 $a^{-2.5}T < 1,000$

$\int_{T} a^{2.5} dt < 1,000$ NOCSAE football helmet standard.

- Maximum Translational Acceleration.
- Average acceleration plus time duration.
- D Gadd Severity Index GSI.
- > Versace "Correction".

Versace "Correction". (1971)

 $a^{-2.5}T < 1,000$

 $[1/T \int a(t)dt]^{2.5}T < 1,000$

If he'd only left it alone.....

- Maximum translational acceleration.
- D Maximum acceleration plus dwell times.
- J Gadd Severity Index GSI.
- **)** Versace Correction.
- **) "Head Injury Criterion" HIC.**

"Head Injury Criterion" - HIC.

$$[1/(t_2 - t_1)\int_{t_1}^{t_2} a(t)dt]^{2.5}(t_2 - t_1) < 1,000$$

FMVSS 208 - occupant protection

What's wrong with HIC?

- 1. Introduced by NHTSA without peer review.
- 2. Assigns attributes to a(t) based on a_{ave}
- 3. Provides "unsafe pulse" within a "safe" pulse.
- 4. Has nonsensical units.
- 5. Takes no consideration of
 - 1. Injury type.
 - 2. Rotation.
 - 3. Direction.
 - 4. Mass.

What's right with HIC?

- 1. It contains a_{max}.
- 2. It correlates better than a_{max} because it introduces part of the "time duration" factor.
- 3. Risk curves have been developed.

HIC Brain Injury Risk Curve (Mertz)

Linear Headform Response

Rotational Headform Response

